Queueing Formulas

\(\lambda \): Arrival rate per time unit.

\(\mu \): Service rate (1/service time)

Poisson Arrival Exponential Service (M/M/s)

<table>
<thead>
<tr>
<th>Description</th>
<th>One Server</th>
<th>Two Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0) Probability of no customers in system</td>
<td>(1 - \frac{\lambda}{\mu})</td>
<td>(\frac{2\mu - \lambda}{2\mu + \lambda})</td>
</tr>
<tr>
<td>(P_w) Probability of waiting for service</td>
<td>(\frac{\lambda}{\mu})</td>
<td>(\frac{\lambda^2}{\mu(2\mu + \lambda)})</td>
</tr>
<tr>
<td>(L_q) Average number of customers in line</td>
<td>(\frac{\lambda^2}{\mu(\mu - \lambda)})</td>
<td>(\frac{\lambda^3}{\mu(4\mu^2 - \lambda^2)})</td>
</tr>
<tr>
<td>(L) Average number of customers in system</td>
<td>(\frac{\lambda}{\mu - \lambda})</td>
<td>(\frac{4\mu\lambda}{4\mu^2 - \lambda^2})</td>
</tr>
<tr>
<td>(W_q) Average time spent in line</td>
<td>(\frac{\lambda}{\mu(\mu - \lambda)})</td>
<td>(\frac{\lambda^2}{\mu(4\mu^2 - \lambda^2)})</td>
</tr>
<tr>
<td>(W) Average time spent in system</td>
<td>(\frac{1}{\mu - \lambda})</td>
<td>(\frac{4\mu}{4\mu^2 - \lambda^2})</td>
</tr>
</tbody>
</table>

Poisson Arrival General Service (M/G/1)

\[
\begin{align*}
 P_0 &= 1 - \frac{\lambda}{\mu} \\
 P_w &= \frac{\lambda}{\mu} \\
 L_q &= \frac{\lambda^2 \sigma^2 + \left(\frac{\lambda}{\mu}\right)^2}{2(1 - \frac{\lambda}{\mu})} \\
 L &= L_q + \frac{\lambda}{\mu} \\
 W_q &= \frac{L_q}{\lambda} \\
 W &= \frac{L}{\lambda}
\end{align*}
\]